
DB-Entwurf Seite 1 von 17

DatenbankenDatenbanken
Teil 2: InformationenTeil 2: Informationen
Kapitel 9: DB_EntwurfKapitel 9: DB_Entwurf

Speicherstrukturen
Vergleich unterschiedlicher Speicherstrukturen

 1. Malwettbewerb
 2. HEAP-Datei
 3. Hash-Verfahren
 4. ISAM
 5. B*-Baum
 6. Sekundärindex

Volker Janßen

DB-Entwurf Seite 2 von 17

Beispiel: Der Malwettbewerb
Alle Kinder die am Malwettbewerb teilnehmen möchten, können ein Bild mit ihrem Na-
men und Ihrem Alter versehen und abgeben.

Wie kann nach dem Malwettbewerb die Rückgabe der Bilder am geschicktes-
ten organisiert werden?

Für die Ausgabe der Bilder wurde eigens eine Raum zur Verfügung gestellt.
In diesem Raum befinden sich viele kleine Tische, auf denen die Bilder ausgebreitet
werden können. (Auf jedem Tisch können bis zu drei Bilder abgelegt werden.)

Teilnehmen
An dem Malwettbewerb haben die folgenden
10 Kinder teilgenommen:

Uwe (5), Ulrike (12), Anke (7),
Sabine (8), Antonia (6), Marvin (13),
Anton (6), Tobias (11), Udo (10),
Torsten (9).

In Klammen ist das jeweilige Alter des Kindes angegeben.

Volker Janßen

DB-Entwurf Seite 3 von 17

HEAP-Datei
Heap-Datei

Bei einer Heap-Datei werden die Datensätze unsortiert hintereinander (sequentiell)
geschrieben.

In dem Beispiel wurden die Tische einfach hintereinander aufgestellt
und die Zeichnungen darauf unsortiert ausgelegt.

Vorteil:
Das Auslegen der Zeichnungen ist sehr einfach.

Nachteil:
Wenn ein Kind seine Zeichnung abholen möchte, muss es alle Tische
nacheinander absuchen bis es seine Zeichnung gefunden hat.

Fazit:
Die einfache Heap-Datei ist für Abfrageoperationen extrem schlecht geeignet,
da sie völlig unsortiert ist.

Volker Janßen

DB-Entwurf Seite 4 von 17

HEAP-Datei

Volker Janßen

Raum (HEAP-Datei)

Tisch 3
Tisch 1

Tisch 2
Sabine


Sabine



Tobias


Tobias



Udo


Udo



Tisch 4

Uwe


Uwe



Anke


Anke



Ulrike


Ulrike



Antonia

 
Antonia

  Marvin


Marvin



Torsten

 
Torsten

 

Anton


Anton



DB-Entwurf Seite 5 von 17

Hash-Verfahren
Hash-Verfahren

Bei dem Hash-Verfahren werden die Datensätze unterschiedlichen Bereichen zuge-
ordnet. Innerhalb der Bereiche sind die Datensätze wieder ungeordnet. Die Zuord-
nung der Datensätze zu den Bereichen erfolgt über eine Funktion (Hashfunktion).

In dem Beispiel werden die Bilder anhand der Länge der Kindernamen
mit Hilfe der Modulo 3 Hash-Funktion auf drei Bereiche aufgeteilt.

Vorteil:
Das Auslegen der Zeichnungen ist immer noch einfach. Das Durchsuchen kann
bis zu einem der Bereichsanzahl entsprechenden Faktor verringert werden.

Nachteil:
Die einzelnen Bereiche müssen sequentiell durchsucht werden.

Fazit:
Das Hash-Verfahren ermöglicht ein einfaches Einfügen von Datensätzen. Auch das
Löschen und Lesen von Daten ist im Vergleich zur Heap-Datei deutlich schneller.
Nachteilig ist, dass eine sortierte Ausgabe der Daten durch dieses Verfahren nicht
unterstützt wird.

Volker Janßen

DB-Entwurf Seite 6 von 17

Hash-Verfahren

Volker Janßen

Raum (Hash-Verfahren)

Tisch 3

Tisch 4

Namensläne
Modulo 3

 Rest 0 = Bereich 1
 Rest 1 = Bereich 2
 Rest 2 = Bereich 3

Namensläne
Modulo 3

 Rest 0 = Bereich 1
 Rest 1 = Bereich 2
 Rest 2 = Bereich 3

Bereich 1
Tisch 1

Anton


Anton



Tisch 2

Tobias


Tobias



Tisch 3

Torsten

 
Torsten

 

Ulrike


Ulrike

 Udo


Udo



Bereich 2

Bereich 3

Anke


Anke

Sabine


Sabine

 Antonia

 
Antonia

 

Uwe


Uwe


Marvin

 
Marvin

 

DB-Entwurf Seite 7 von 17

ISAM-Verfahren
ISAM-Verfahren

Bei dem ISAM-Verfahren (Index Sequential Access Method) wird neben der eigentli-
chen Datendatei, die die Datensätze in sortierter Reihenfolge enthält, eine weitere
Datei, die so genannte Index-Datei gepflegt. Diese Index-Datei ermöglicht einen be-
schleunigten Zugriff auf die Daten.

In dem Beispiel werden die Zeichnungen alphabetisch nach Namen sortiert auf
den Tischen ausgelegt. Über den alphabetisch ersten Name wird ein Index erstellt.

Vorteil:
Der richtige Tisch wird über den Index bestimmt. Die alphabetische Sortierung
erleichtert die Suche auf dem Tisch.

Nachteil:
Das Auslegen der Bilder ist wegen der Sortierung sehr aufwändig.
Die Indexdatei muss angepasst werden.

Fazit:
Durch die Sortierung der Datensätze und der Indexdatei
wird das Lesen von Daten deutlich effizienter.
Das Einfügen und Löschen von Daten wird deutlich aufwendiger.

Volker Janßen

DB-Entwurf Seite 8 von 17

ISAM

Volker Janßen

Raum (ISAM)

Tisch 1

Anke


Anke

 Anton


Anton

Antonia

 
Antonia

 

Tisch 2

Marvin

 
Marvin

 Sabine


Sabine

Tobias


Tobias



Tisch 3

Torsten

 
Torsten

  Udo


Udo

Ulrike


Ulrike



Tisch 4

Uwe


Uwe



Index
 Anke
 Marvin
 Torsten
 Uwe

Index
 Anke
 Marvin
 Torsten
 Uwe

DB-Entwurf Seite 9 von 17

B*-Baum
Baumartige Struktur

Betrachtet man die Indexdateien des ISAM-Verfahrens wiederum als Datensätze,
so kann zu diesen Datensätzen wiederum eine Indexdatei generiert werden. Durch
diese Verschachtelung von Indexdateien kommt man zu einer baumartigen Struktur.

Merkmale eines B*-Baumes:
• Jeder Knoten des Baumes kann mehrere Kindknoten haben (Mehrwegbaum).
• Der Baum ist ausgeglichen (balancierter Baum).
• Die Knoten enthalten nur Verweise und nicht die eigentlichen Daten.

In dem Beispiel werden die Zeichnungen wieder sortiert auf den Tischen ausgelegt.
Dann werden mehrere Teilindizes erzeugt, die jeweils mehrere benachbarte Tische
umfassen. Über diese Teilindizes wird eine übergeordnete Indexdatei angelegt.

Vorteil:
Es entstehen keine „übergroßen“ Indexdateien.

Nachteil:
Komplizierte Einfüge- und Löschoperationen.

Fazit:
Optimale Lösung für Anwendungen mit überwiegend lesendem Zugriff.

Volker Janßen

DB-Entwurf Seite 10 von 17

B*-Baum

Volker Janßen

Raum (B*-Baum)

Teil-Index
 Anke
 Marvin

Teil-Index
 Anke
 Marvin

Tisch 1

Anke


Anke

 Anton


Anton

Antonia

 
Antonia

 

Tisch 2

Marvin

 
Marvin

 Sabine


Sabine

Tobias


Tobias



Tisch 3

Torsten

 
Torsten

  Udo


Udo

Ulrike


Ulrike



Tisch 4

Uwe


Uwe



Teil-Index
 Torsten
 Uwe

Teil-Index
 Torsten
 Uwe

Index
 Anke
 Torsten

Index
 Anke
 Torsten

DB-Entwurf Seite 11 von 17

Sekundärindex
Sekundärindex

Ein Sekundärindex ist ein Index (Beispielsweise ein B*-Baum) über ein zusätzliches
Merkmal.

In dem Beispiel wird ein Sekundärindex über das Alter der Kinder erzeugt. Dabei ha-
ben die Kinder folgende Alter:

Uwe 5, Ulrike 12, Anke 7, Sabine 8, Antonia 7,
Marvin 13, Anton 6, Tobias 11, Udo 10, Torsten 9

Vorteil:
Die Effizienz von lesenden Zugriffen bezüglich des zusätzlichen Merkmals können
erheblich gesteigert werden. Der Primärindex bleibt unverändert.

Nachteil:
Einfüge- und Löschoperationen werden nochmals komplizierter, da mehrere Indizes
angepasst werden müssen.

Fazit:
Optimale Lösung zur Beschleunigung von lesenden Zugriffen auf beliebige weitere
Merkmale. Der Primärindex bleibt davon unbeeinflusst.

Volker Janßen

DB-Entwurf Seite 12 von 17

Sekundärindex

Volker Janßen

Raum (B*-Baum)

Teil-Index
 Anke
 Marvin

Teil-Index
 Anke
 Marvin

Tisch 1

Anke


Anke

 Anton


Anton

Antonia

 
Antonia

 

Tisch 2

Marvin

 
Marvin

 Sabine


Sabine

Tobias


Tobias



Tisch 3

Torsten

 
Torsten

  Udo


Udo

Ulrike


Ulrike



Tisch 4

Uwe


Uwe



Teil-Index
 Torsten
 Uwe

Teil-Index
 Torsten
 Uwe

Index
 Anke
 Torsten

Index
 Anke
 Torsten

 7

 6
 7

 13

 8
 11

 9

 10
 12

 5

Teil-
Index

5
6
7

Teil-
Index

5
6
7

Teil-
Index

8
9

10

Teil-
Index

8
9

10

Teil-
Index

11
12
13

Teil-
Index

11
12
13Index

5
8

11

Index
5
8

11

DB-Entwurf Seite 13 von 17

Vergleich Speicherstrukturen

Eignung der Speicherstrukturen
für Lese- und Einfügeoperationen.

LESE-
Operation

EINFÜGE-
Operation

Geeignete Datenorganisation

viel wenig B*-Baum
Indexdateien auf Indexdateien

ISAM
Sortierte Datei mit Indextabelle

Hashing
Aufteilung in unsortierte Bereiche

wenig viel

Heap-Datei
Einfache sequentielle Datei

Volker Janßen

DB-Entwurf Seite 14 von 17

Vergleich Speicherstrukturen

Eignung der Speicherstrukturen
für Lese- und Einfügeoperationen.

LESE-
Operation

EINFÜGE-
Operation

Geeignete Datenorganisation

viel wenig B*-Baum
Indexdateien auf Indexdateien

ISAM
Sortierte Datei mit Indextabelle

Hashing
Aufteilung in unsortierte Bereiche

wenig viel

Heap-Datei
Einfache sequentielle Datei

Volker Janßen

DB-Entwurf Seite 15 von 17

Vergleich Speicherstrukturen

Eignung der Speicherstrukturen
für Lese- und Einfügeoperationen.

LESE-
Operation

EINFÜGE-
Operation

Geeignete Datenorganisation

viel wenig B*-Baum
Indexdateien auf Indexdateien

ISAM
Sortierte Datei mit Indextabelle

Hashing
Aufteilung in unsortierte Bereiche

wenig viel

Heap-Datei
Einfache sequentielle Datei

Volker Janßen

DB-Entwurf Seite 16 von 17

Vergleich Speicherstrukturen

Eignung der Speicherstrukturen
für Lese- und Einfügeoperationen.

LESE-
Operation

EINFÜGE-
Operation

Geeignete Datenorganisation

viel wenig B*-Baum
Indexdateien auf Indexdateien

ISAM
Sortierte Datei mit Indextabelle

Hashing
Aufteilung in unsortierte Bereiche

wenig viel

Heap-Datei
Einfache sequentielle Datei

Volker Janßen

DB-Entwurf Seite 17 von 17

Vergleich Speicherstrukturen

Eignung der Speicherstrukturen
für Lese- und Einfügeoperationen.

LESE-
Operation

EINFÜGE-
Operation

Geeignete Datenorganisation

viel wenig B*-Baum
Indexdateien auf Indexdateien

ISAM
Sortierte Datei mit Indextabelle

Hashing
Aufteilung in unsortierte Bereiche

wenig viel

Heap-Datei
Einfache sequentielle Datei

Volker Janßen

