
Teil 2: OO-Grundlagen / Beziehungen / Abstrakte Klassen und Interfaces

4 OO-Grundlagen

 4 OO-Grundlagen

Bei der objektorientierten Programmierung steht, wie
der Name bereits andeutet, das Objekt im Mittelpunkt
der Betrachtung. Dabei bildet ein Objekt eine logische
Einheit aus Variablen und Methoden. Auf dieser Basis
lassen sich viele Problemstellungen auf natürliche Wei-
se nachbilden.

UML
UML ist eine vereinheitlichte Modellie-
rungssprache für die objektorientierte
Software-Entwicklung, durch die un-
terschiedlichste Diagramme definiert
und unterschieden werden. Eines der
gebräuchlichsten UML-Diagramme
zur Veranschaulichung objektorien-
tierter Zusammenhänge ist das UML-Klassendia-
gramm, dessen Komponenten in den nachfolgenden
Kapiteln im entsprechenden Kontext gleich mit einge-
führt werden. Das Thema UML selbst wird zu einem
späteren Zeitpunkt im Kapitel 14 aufgegriffen und aus-
führlich behandelt.

 4.1 Objekte / Klasse
Als einführendes Beispiel
wird das Objekt Kuchen be-
trachtet. Dieses Objekt hat
folgenden "Lebenszyklus":

Lebenszyklus

Der Einfachheit halber beginne der Lebenszyklus eines
Kuchenobjektes mit dem Zeitpunkt, an dem alle benö-
tigten Zutaten in eine Rührschüssel gegeben worden
sind. Nach einer Phase des Knetens und Verrührens, in
der der Kuchen nur als unfertiger Teig existiert, wird der
Kuchen gebacken. Anschließend wird der Kuchen nach
und nach gegessen, bis nichts mehr von ihm übrig ist.
Diesen Lebenszyklus gilt es nun möglichst exakt mithil-
fe eines Objektes in Java nachzubilden.

 4.1.1 Objektvariable

Objektvariable
Objektvariablen sind Variablen, die den Zustand eines
Objektes beschreiben. Objektvariablen werden OHNE
das Schlüsselwort static meist zu Beginn einer Klasse
außerhalb von Methoden definiert.

In dem Kuchenbeispiel kann dies zum einen durch die
Mengenangabe der Zutaten1

mehl, butter, eier, zucker,

aber auch durch zusätzliche Variablen wie

stuecke, teig

erfolgen. Die Variable stuecke (Stücke) gibt die Anzahl
der noch vorhanden Reststücke eines Kuchens wieder.
Die Variable teig kann über einen boolschen Wert die
Information "noch Teig" oder "bereits fertig gebackener
Kuchen" speichern.

 4.1.2 Objektmethode

Objektmethode
Objektmethoden verändern die Objektvariablen und da-
mit den Zustand eines Objektes. Objektmethoden wer-
den OHNE das Schlüsselwort static innerhalb einer
Klasse definiert.

Ein Kuchenobjekt sollte eine Methode

backen()

besitzen, mit der die Variable teig und damit der Zu-
stand des Kuchens vom Zustand "Teig" in den Zustand
"Kuchen" überführt werden kann. Eine zweite Methode:

essen()

verringert den Zahlenwert der Objektvariablen stuecke
so, dass jederzeit die Anzahl der noch verbleibenden
Kuchenstücke ermittelt werden kann.

 4.1.3 Klasse

Klasse2

Eine Klasse beschreibt eine Menge von Objekten mit
gleichen Eigenschaften.

Eine Klasse fasst lediglich alle Eigenschaften eines Ob-
jektes zusammen. Beispielsweise enthält die Klasse
Kuchen alle Objektvariablen und Objektmethoden eines
Kuchenobjektes. Sie ist damit vergleichbar mit einem
Rezept aus einem Backbuch. Die Klasse Kuchen ist le-
diglich die Beschreibung, die Bauanleitung für unter-
schiedliche Kuchen mit gleichen Zutaten. Sie ist aber
kein tatsächliches Kuchenobjekt mit konkreten Mengen-
angaben für die Zutaten. Damit wird eine neue Meta-
ebene in die Programmierung eingezogen:

1 Versuchen Sie bitte nicht die in diesem Buch beschriebenen
Kuchenobjekte real (durch tatsächliches Nachbacken) zu erzeugen!
Wenn doch, sollten Sie zumindest noch die Zutat Backpulver ergänzen.

2 Eine Klasse entspricht in etwa einer Entität beim Datenbankentwurf.

56

Zeit

Menge

backen

essen

Teig Kuchen

Teil 2: OO-Grundlagen / Beziehungen / Abstrakte Klassen und Interfaces

4 OO-Grundlagen

Metaebene
Mit den Klassen kommt eine Metaebene hinzu. Die in
der Klasse zusammengefassten Objektvariablen und
Methoden werden nicht mehr direkt angesprochen und
ausgeführt, sondern dienen lediglich als Vorlage zum
Erstellen von Objekten. Klassen, die nicht der Steue-
rung, sondern ausschließlich der Modellierung konkre-
ter Objekte dienen, werden auch als Fachklassen be-
zeichnet.

Fachklasse
Fachklassen dienen der fachlichen Modellierung und
Beschreibung konkreter Objekte auf der Metaebene.

Klassendarstellung in UML
Eine Klasse wird im UML-Klassen-
diagramm durch ein Rechteck dar-
gestellt. In weiteren abgetrennten
Bereichen sind Objektvariablen
und -methoden definierbar. Die
Datentypen folgen, durch Doppel-
punkt getrennt den Variablen, der
Typ des Rückgabewert den Me-
thoden. Der Pseudodatentyp void
ist in UML nicht definiert und wird
daher grundsätzlich weggelassen.

Java-Programm
In Java sind die vorgestellten Objektvariablen und -me-
thoden durch folgende Kasse darstellbar:

Klasse Kuchen

1 package grundlagen01;
2
3 public class Kuchen
4 {
5 int mehl, butter, eier, zucker;
6 boolean teig;
7 int stuecke;
8
9 public void backen()
10 {
11 teig = false;
12 }
13
14 public void essen (int anzahl)
15 {
16 stuecke = stuecke - anzahl;
17 }
18 }

Konkrete Ebene
Neben der Metaebene gibt es im Programm auch im-
mer noch die konkrete Ebene. Hier können konkrete
Objekte nach den Bauplänen der Funktionsklassen er-
zeugt werden. Auf der konkreten Programmebene be-
findet sich beispielsweise die main()-Funktion. Sie wird
direkt beim Programmstart aufgerufen und ist somit die
zentrale Steuerungsmethode, die die Programmabar-
beitung kontrolliert und koordiniert. Doch selbst die
main()-Funktion muss in Java innerhalb einer Klasse

definiert werden. Sie unterscheidet sich aber durch das
Schlüsselwort static von anderen objektbezogenen Me-
thoden. Durch das Schlüsselwort static wird die main()-
Funktion zur Klassenmethode, die eigenständig und ob-
jektunabhängig verwendet werden kann. Obwohl die
main()-Funktion in jeder beliebigen Klasse stehen kann,
sollte die Metaebene und die konkrete Programmebene
nach Möglichkeit sauber voneinander getrennt werden.
Es ist somit ratsam die main()-Funktion in eine eigene
Klasse auszulagern. Eine solche Klasse wird auch als
Steuerungsklasse bezeichnet.

Steuerungsklasse
Steuerungsklassen sind Klassen, die der Steuerung
und Kontrolle einzelner Programmteile oder der zentra-
len Programmsteuerung dienen.

 4.1.4 Objekt

Nach dem Bauplan einer Klasse können beliebig viele
konkrete Objekte erzeugt werden. Da Objekte grund-
sätzlich zu den referenziellen Datentypen gehören er-
folgt die Objekterzeugung mithilfe des new-Operators.
Das Erzeugen der Objekte erfolgt auf der konkreten
Programmebene beispielsweise in der main()-Funktion.
Sollen beispielsweise zwei Kuchen erstellt werden, ein
kleiner Kuchen mit folgenden Zutatenangaben:

Mehl 300g; Butter 250g; Zucker 200g; 4 Eier

und ein zweiter, großer Kuchen, mit denselben Zutaten,
aber anderen Mengenangaben

Mehl 500g; Butter 500g; Zucker 500g; 6 Eier

dann kann die main()-Funktion (in einer separaten Klas-
se) wie folgt formuliert sein:

Steuerungsklasse mit main()-Methode

1 package grundlagen01;
2
3 public class KuchenStart
4 {
5 public static void main(String[] args)
6 {
7 Kuchen klein = new Kuchen();
8 Kuchen gross = new Kuchen();
9
10 klein.mehl = 300; klein.butter = 250;
11 klein.zucker = 200; klein.eier = 4;
12 klein.teig = true; klein.stuecke = 12;
13
14 gross.mehl = 500; gross.butter = 500;
15 gross.zucker = 500; gross.eier = 6;
16 gross.teig = true; gross.stuecke = 16;
17 }
18 }

Die Zeile 7 und 8 des Programms erzeugen mithilfe des
new-Operators die beiden Kuchen klein und gross und
stellen entsprechend Speicherplatz zur Verfügung. Je-
der der beiden Kuchen erhält dabei, gemäß den Vorga-
ben der Klasse Kuchen, seine eigene mehl, butter,
eier, zucker, teig und stuecke Variable. Deshalb müs-
sen die Objektvariablen auch objektbezogen angespro-

57

Kuchen

mehl : int
butter : int
eier : int
zucker : int
teig : boolean
stuecke : int

backen()
essen(anzahl : int)

Teil 2: OO-Grundlagen / Beziehungen / Abstrakte Klassen und Interfaces

4 OO-Grundlagen

chen werden! Will man beispielsweise für den Kuchen
klein die Mengenangabe für Mehl auf 350 ändern, so
erreicht man die Objektvariable mehl über den Objekt-
namen klein.

klein.mehl = 350;

Auch die Objektmethoden backen() und essen() wer-
den eindeutig den Kuchenobjekten zugeordnet und
sind objektbezogen aufzurufen. Möchte man beispiels-
weise den Kuchen gross backen und anschließend drei
Stücke davon essen, so erfolgen auch die Methoden-
aufrufe über den Objektnamen gross.

gross.backen();
gross.essen(3);

UML-Klassendiagramm / Objektdiagramm
In UML sind Objekte ähnlich wie Klassen durch ein
Rechteck darzustellen. Allerdings wird der Objektname
unterstrichen und enthält durch einen Doppelpunkt ge-
trennt den Namen der Klasse,
aus der er erzeugt worden ist.
Den Objektvariablen können die
konkreten Werte mithilfe des '='
-Zeichens nachgestellt werden.
Der Gesamtzusammenhang zwi-
schen der Klasse Kuchen und
den konkreten Kuchenobjekten
mit Namen klein und groß lässt
sich mit Mitteln der UML wir folgt
darstellen:

 4.1.5 Ausgabe

Das bisher vorgestellte Beispielprogramm ist prinzipiell
lauffähig, enthält aber keinerlei Bildschirmausgaben.
Daher lässt sich die Funktionsweise nicht konkret nach-
vollziehen. Zur Kontrolle der Objektvariablen ist es
sinnvoll eine eigene objektbezogene Methode

showObjektVar()

zu schreiben, die nichts anderes macht als alle Objekt-
variablen auf dem Bildschirm auszugeben.

 4.1.6 Beispielprogramm

Kuchen

1 package grundlagen01;
2
3 public class Kuchen
4 {
5 int mehl, butter, eier, zucker, stuecke;
6 boolean teig;
7 //Objektmethoden
8 public void backen()
9 { teig = false; }
10 public void essen (int anzahl)
11 { stuecke = stuecke – anzahl; }
12
13 public void showObjektVar()
14 {
15 System.out.println("***** Kuchen *****");
16 System.out.println("Mehl: " + mehl);
17 System.out.println("Butter: " + butter);
18 System.out.println("Eier: " + eier);
19 System.out.println("Zucker: " + zucker);
20 if(teig) System.out.println("Teig");
21 else System.out.println("Kuchen");
22 System.out.println("Stücke: "+ stuecke);
23 }
24 }

25 package grundlagen01;
26
27 public class KuchenStart
28 {
29 public static void main(String[] args)
30 {
31 Kuchen klein = new Kuchen();
32 klein.mehl = 300; klein.butter = 250;
33 klein.zucker = 200; klein.eier = 4;
34 klein.teig = true; klein.stuecke = 12;
35 klein.showObjektVar();
36 Kuchen gross = new Kuchen();
37 gross.mehl = 500; gross.butter = 500;
38 gross.zucker = 500; gross.eier = 6;
39 gross.teig = true; gross.stuecke = 16;
40 gross.showObjektVar();
41 gross.backen();
42 gross.essen(3);
43 gross.showObjektVar();
44 }
45 }
1 ***** Kuchen *****
2 Mehl: 300
3 Butter: 250
4 Eier: 4
5 Zucker: 200
6 Teig
7 Stücke: 12
8 ***** Kuchen *****
9 Mehl: 500
10 Butter: 500
11 Eier: 6
12 Zucker: 500
13 Teig
14 Stücke: 16

58

Kuchen

mehl : int
butter : int
eier : int
zucker : int
teig : boolean
stuecke : int

backen()
essen(anzahl : int)

klein : Kuchen

mehl : int = 300
butter : int = 250
eier : int = 4
zucker : int = 200
teig : boolean = false
stuecke : int = 12

gross : Kuchen

mehl : int = 500
butter : int = 500
eier : int = 6
zucker : int = 500
teig : boolean = false
stuecke : int = 16

<<instance of>><<instance of>>

15 ***** Kuchen *****
16 Mehl: 500
17 Butter: 500
18 Eier: 6
19 Zucker: 500
20 Kuchen
21 Stücke: 13

Aufgabe
22.4.1



	4 OO-Grundlagen
	4.1 Objekte / Klasse
	4.1.1 Objektvariable
	4.1.2 Objektmethode
	4.1.3 Klasse
	4.1.4 Objekt
	4.1.5 Ausgabe
	4.1.6 Beispielprogramm

