Teil 6: XML-Template / Android-APP-Entwicklung

21 Android-APP-Entwicklung

Android-App-Entwicklung

Android ist ein von Google (weiter-) ent-
wickeltes Betriebssystem, das insbe-
sondere flir mobile Endgerate konzipiert
worden ist. Damit einher gehen beson-
dere Anforderungen an das Betriebs-
system. Android muss im Hinblick auf
den Energieverbrauch extrem ressour-
censchonend sein, da die Endgerate
zumeist akkubetrieben sind. Dies ist ein
wesentlicher Grund dafir, warum das Betriebssystem
Linux nicht direkt als Betriebssystem fir mobile Endge-
rate verwendet werden kann, sondern lediglich als Aus-
gangsbasis fiir die Entwicklung von Android dient. Aber
auch fiir Android entwickelte Anwendungen missen be-
sonderen Bedingungen gentigen.

Besondere Herausforderungen

1. Da es sehr unterschiedliche mobile Endgerate gibt,
muss die Ausgabe den verschiedenen Bildschirm-
grofRen angepasst werden kénnen. Dieselbe APP
sollte nach Mdglichkeit auf Handys, Smartphones,
Tablettes, TV-Geraten etc. lauffahig sein.

2. Sehr unterschiedliche Hardwarehersteller nutzen
auf ihren Geraten Android als Betriebssystem. So-
mit kann nicht garantiert werden, dass die jeweilige
Hardware auch wirklich mit der neuesten Android
Betriebssystemversion kompatibel ist. Vielmehr
muss der Softwareentwickler davon ausgehen,
dass auf den Endgeraten der Nutzer diverse An-
droid-Versionen vorzufinden sind.

Losungsansiatze und Programmiertipps
Android-Versionen

Eine Android-App sollte auf moglichst vielen Endgera-
ten eingesetzt werden kénnen. Daher ist es NICHT rat-
sam eine App ausschlieRlich fur die zur Zeit aktuelle
Android-Version zu entwickeln. Da die verschiedenen
Android-Versionen in der Regel abwartskompatibel
sind, sollte man sich als Entwickler flir eine Android-
Version entscheiden, mit der mindestens 70% bis 80%
der Endgerate abgedeckt werden kénnen. Nur so ist
eine hinreichend grof3e Zielgruppe erreichbar.

Display activity_main.xml
Auch die sehr unterschiedlichen Bildschirmgréfen der
diversen Endgerate stellen eine besondere Herausfor-
derung dar. Um eine Android-App auf unterschiedlichen
Ausgabemedien dynamisch anpassen zu kénnen, wird
bei der Android-App-Entwicklung stark auf die XML-
Templatetechnik gesetzt. Dadurch wird es beispielswei-
se moglich das gesamte Layout einer Anwendung tber
XML-Dokumente zu definieren. Der Entwickler legt da-
bei nur den prinzipiellen Aufbau einer Bildschirmseite
(Activity) einer App fest, ohne sich um die tatsachliche
Umsetzung und das unterschiedliche Erscheinungsbild

auf den diversen Endgeraten Gedanken machen zu
mussen (siehe XML-Template, Kapitel 20).

Auflerdem ist mithilfe der XML-Templates eine optimale
Trennung zwischen Darstellung (View) und Steuerung
(Controll) und somit eine ideale Umsetzung der MVC-
Architektur erreichbar (vergleiche Kapitel 12.3 u. 18).
Sprachen strings.xml
Auch samtliche Textausgaben einer App (wie etwa ein-
fache Label oder auch Schalterbeschriftungen, etc.)
lassen sich mittels XML-Templates in separaten Datei-
en definieren. Diese Technik ist immer dann besonders
wichtig, wenn eine App auch in mehreren Sprachen an-
geboten werden soll. Denn dann kann die Anwendung
extrem einfach, auch im Nachhinein, mehrsprachig an-
gepasst werden. Wenn eine App auf dem internationa-
len Markt Erfolg haben soll, muss sie mindestens auch
die Sprache Englisch unterstitzen.

Java vs. XML-Template MainActivitiy.java
Android-Anwendungen werden generell in Java pro-
grammiert. Obwohl es mdoglich ist, fast die komplette
Standard-Java-API zu nutzen, sollte man sich, gerade
was die GUI-Entwicklung angeht, von der ,klassischen*
Programmierung I6sen und unbedingt auf die XML-tem-
platebasierte Programmierung umsteigen. Nur so lasst
sich ein gerateunabhangiges und MVC-architekturkon-
formes Programm effizient realisieren.

Die Programmiersprache Java kommt spatestens dann
ins Spiel, wenn es um die eigentliche Programmsteue-
rung, die Ausformulierung der Funktionalitat geht (ent-
spricht dem Controller der MVC-Architektur). Was bei-
spielsweise bei einem Schalterdruck oder einer
Menlauswahl tatsachlich passieren soll, muss in ent-
sprechenden Java-Methoden ausformuliert werden.

Dateien eines Android-Projektes

In einem minimalen Android-Projekt' mit nur einer einzi-
gen Bildschirmseite (Activity) gibt es mindestens drei
Dateien, in denen der Entwickler Anderungen vorneh-
men muss.

activity_main.xml Layout (Display)
Diese XML-Datei dient der Definition des Layouts.
string.xml Values (Sprachen)

In der string.xml-Datei sind alle landessprachenabhan-
gigen Anzeigetexte und Beschriftungen definiert.
MainActivity.java Java (Steuerung)
Diese Java-Datei realisiert die Programmsteuerung.

Ein Android-Projekt umfasst allerdings noch eine Reihe
weiterer Dateien, von denen der Entwickler mindestens
noch die AndroidManifest.xml-Datei (enthalt grundle-
gende Spezifikationen zur App) und die R.java-Datei
(Schnittstellendatei zwischen View und Controller) ken-
nen sollte. Beide Dateien und deren Bedeutung werden
im folgenden Beispiel genauer beschrieben.

1 Ein minimales Android-Projekt besteht aus nur einer einzigen
Bildschirmseite ohne Mentis.

261

¢

Kapitel
20
12.3
18

d

Kapitel
11.4.2

Teil 6: XML-Template / Android-APP-Entwicklung

21 Android-APP-Entwicklung

PIFTT Erste Beispiel-App (KW-PS)

Im nachfolgenden Beispiel soll der Umrechner zwi-
schen PS (Pferdestarken) und KW (Kilowatt) aus Kapi-
tel 11.4.2 als Android-App ausgefiihrt werden.

Umrechner
PS: S5

KW: 402116

@©ee ©

UMRECHNEN LOSCHEN BEENDEN

Die App selbst ist sehr einfach gehalten! Sie besitzt nur
eine einzige Anzeigeseite, auch Activity genannt. Die
Activity selbst soll folgende Komponenten anzeigen:

(a) app_name

Name der App KW_PS Label

@ Beschreibungstext (klein)

Beschreibung Umrechner TextView
(¢) Ps-Eingabezeile

Beschriftung PS: TextView
Eingabefeld EditText
@ KW-Eingabezeile

Beschriftung KW: TextView
Eingabefeld EditText
@ Schalter

Beschriftung UMRECHNEN Button
Beschriftung LOSCHEN Button
Beschriftung BEENDEN Button

262

Funktionsweise

Der Schalter BEENDEN soll das gesamte Programm
beenden und die App schlie3en.

Uber den Schalter LOSCHEN kann man beide Einga-
befelder leeren.

Sind beide Eingabefelder leer, so lasst sich entweder
ein PS- oder ein KW-Wert eingeben und tber den UM-
RECHNEN-Schalter der jeweils andere Wert berechnen
und anzeigen.

FIFFEN Entwicklungsumgebung

Bevor man nun mit der ei-
gentlichen Programmentwick-
lung beginnen kann, muss zu-
nachst die Android-Entwick-
lungsumgebung Android Stu-
dio installiert werden.

Dabei basiert die von Google kostenlos bereitgestellte
IDE auf der IntelliJ IDEA. Andere IDE's wie etwa die
Eclipse werden von Google nicht mehr supportet.
Installation

Wahrend der Installation von Android Studio besteht
die Moglichkeit auch direkt ein virtuelles Device, einen
Emulator fir Android-Endgerate zu installieren. Dies ist
immer dann sinnvoll, wenn man die Applikationen nicht
direkt auf einem Android-Gerat testen kann oder man
den damit verbundenen technischen Aufwand scheut.
Neues Projekt anlegen

Ist Android Studio installiert, kann man ein neues Pro-
jekt anlegen. Dafur sind folgende Angaben notwendig:

Studio

1. Application-Name (Applikationsname)
a) sollte mit einem Groflbuchstaben beginnen.
2. Company Domain (Unternehmensdomain)
a) kann auch eine Fantasiedomain sein.
3. SDK fir unterschiedliche Plattformen
a) SDK fur "Phone and Tablet" auswahlen.
b) Minimale Android-Version bestimmen.
(so wahlen, dass mehr als 70% aller Endgerate
die App auch spater einsetzen kénnen!)
4. Start-Avtivity (Grundaufbau) wahlen
a) Da die Beispiel-App sehr einfach ist und sogar
ohne Menl auskommt gentigt hier die Auswahl
"Empty Activity".
b) Von der Auswahl hangt ab, wie beispielsweise
die AndroidManifest.xml Datei des Projektes
anschlieRend automatisch generiert wird.

Anmerkung

Diese Informationen zur Installation und Projekterzeu-
gung in Android Studio sollen hier gentigen. Genaue-
re und den einzelnen Android-Studio-Versionen exakt
angepasste "Schritt fir Schritt"-Installationsanleitun-
gen lassen sich im Internet finden.

Android

25

Aufgabe
22.21.1

-Template / Android-APP-Entwicklung

FIFPA Verzeichnisstruktur

v [:; app

Ist das Android Studio installiert
und das erste Projekt angelegt, so
sind in dem Applikationsverzeichnis
folgende Unterordner zu finden.
manifests

» [manifests
» [java
> Cares

Der Ordner manifests enthalt alle
Ubergeordneten Spezifikationsdateien, so auch die An-
droidManifest.xml-Datei der Beispiel-App. Auf die Be-
deutung dieser Datei wird zu einem spateren Zeitpunkt
noch eingegangen.

java

Im Ordner java sind alle Java-Quelldateien zu finden.
Auch die Datei MainActivity.java, die die einzige Avtivity
der Beispiel-App steuert, wird in Unterverzeichnissen
dieses Ordners zu finden sein.

res

Die Abkurzung res steht fiir Ressource und bezeichnet
damit ein Verzeichnis, das unterschiedlichste Quellda-
teien wie Layoutbeschreibungen oder Grafiken (Icon)
sowie Textfragmente in Unterverzeichnissen zusam-
menfasst.

Anmerkung

Bereits nach dem Anlegen des ersten Projektes sind
in dem Verzeichnisbaum alle notwendigen Dateien fiir
eine lauffahige Applikation vorhanden. Startet man
das Projekt, so erscheint im Emulator bereits (nach
einiger Zeit...) die eigene App mit der Ausgabe "Hallo
World". Zur Realisierung der Beispiel-App sind somit
nur die bestehenden Dateien richtig anzupassen.

XN Die Datei string.xml

v Caapp

Die Datei strings.xml
stellt landessprachen-

» [manifests abhingige Texte bereit.

> [java Sie bildet damit die
v CEres Grundlage fur Elemeq-
B drawable te der Layogtbeschrel-
bung. Daher ist es sinn-
v [EJlayout voll, gerade mit der Be-
@activity_main.xml arbeitung dieser Datei

» [mipmap zu beginnen.

Android Studio stellt al-

v [Evalues lerdings Hilfsmittel zur

colors.xml

Verfligung um auch
» [dimensxml (2) nachtréglich noch
' stringsxml String definitionen

nachzureichen, so dass

™
<o i
© stylesxml es nicht allzu problema-

tisch ist, sollte man mal
eine Textdefinition vergessen haben. Da die Datei
string.xml Werte (values) von Textvariablen (Strings)
als Quellinformationen (ressourcen) bereitstellt, ist die
Datei logischerweise im Verzeichnis

app\res\values\string.xml
zu finden. Die Datei strings.xml hat folgenden Inhalt:
Alle Texte der Beispiel-App sind darin enthalten.

string.xml

<resources>
<string name="app_name">KW PS</string>
<string name="textView_ueberschrift">
Umrechner</string>
<string name="textView_ps">PS:</string>
<string name="textView kw">KW:</string>
<string name="button_umrechnen">
UMRECHNEN</string>
<string name="button_beenden">
BEENDEN</string>
<string name="button_loeschen">
LOSCHEN</string>
</resources>

Dabei handelt es sich um eine reine XML-Datei, die es
ermdglicht Texte wie UMRECHNEN (Zeile 8) Uber ein-
deutige Namen wie button_umrechnen (Zeile 7) in an-
deren Dateien anzusprechen.

Moéchte man nun das Programm auf andere Landes-
sprachen umstellen, genlgt es den eigentlichen Text
UMRECHNEN durch z. B. CONVERT zu ersetzen. Alle
anderen Programmdateien sind von dieser Anderung
nicht betroffen, da auch der geanderte Text weiterhin
Uber den internen Namen button_umrechnen an-
sprechbar bleibt.

FIFN Die Datei activity_main.xml

Ist die Datei

string.xml vorhan- |v 3 app

den, Ias§t sich mit » [manifests
deren Hilfe nun das)

Layout (View) der » Ojava

Activity der Beispie- v Eares
lapplikation bestim-)

men. Auch hierbei [drawable
handelt es sich um v [layout

eine XML-Datei, die
die Position und das

Aussehen einzelner > Elmipmap

™ - -,
© activity_main.xml

Grafikkomponenten
definiert. Die Datei activity_main.xml ist zu finden im
Verzeichnis:

app\res\layout\activity_main.xml

Bitte beachten Sie den Zusammenhang zwischen den
rot hinterlegten Stellen hier und in der Datei string.xml.

activity_main.xml

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"

android:layout_height="match_parent”
android:paddingBottom="@dimen/activity vertical margin"

APP-Entwicklung

<TextView

<EditText

<EditText

<TextView
android

android
android
<TextView

android

<Button
android

<Button

<Button

android:
android:
android:
android:

android:
android:
android:
android:
android:layout_toRightOf="@+id/textView_ueberschrift"

android:

android:
android:
android:
android:
android:
android:

android:
android:

android:
android:
android:
android:layout_toRightOf="@+id/textView_ueberschrift"
android:

android:

android:
android:layout_height="wrap_content"
android:
android:
android:
android:
android:layout_toEndOf="@+id/button_loeschen" />

android:

android:
android:
android:text="@string/button_loeschen"
android:
android:
android:
android:

android:onClick="onClickLoeschen" />

android:paddingLeft="@dimen/activity_horizontal_margin"
android:paddingRight="@dimen/activity_horizontal_margin"
android:paddingTop="@dimen/activity_vertical_margin"
tools:context="com.kw_ps.kw_ps.MainActivity">

layout_width="wrap_content"
layout_height="wrap_content”
text="@string/textView_ueberschrift"
id="@+id/textView_ueberschrift" />

layout_width="match_parent"
layout_height="wrap_content"
id="@+id/editText_ps"
layout_below="@+id/textView_ueberschrift"

layout_gravity="left|right" />

layout_width="match_parent"
layout_height="wrap_content"
id="@+id/editText_kw"
layout_below="@+id/editText_ps"
layout_toRightOf="@+id/textView_ueberschrift"
layout_toEndOf="@+id/textView_ueberschrift" />

:layout_width="wrap_content"
android:
android:
android:
android:

layout_height="wrap_content”
text="@string/textView_ps"
id="@+id/textView_ps"
layout_above="@+id/editText_kw"

:layout_alignParentLeft="true"
:layout_alignParentStart="true" />

layout_width="wrap_content"
layout_height="wrap_content"

rtext="@string/textView_kw"
android:
android:
android:
android:

id="@+id/textView_kw"
layout_alignBottom="@+id/editText_kw"
layout_alignParentLeft="true"
layout_alignParentStart="true" />

:layout_width="wrap_content"
android:

layout_height="wrap_content"
text="@string/button_umrechnen"
id="@+id/button_umrechnen"
layout_below="@+id/textView_kw"

layout_toEndOf="@+id/textView_ueberschrift"
onClick="onClickUmrechnen" />

layout_width="wrap_content"

text="@string/button_beenden"
id="@+id/button_beenden"
layout_below="@+id/editText_kw"
layout_toRightOf="@+id/button_loeschen"

onClick="onClickBeenden"

layout_width="wrap_content"
layout_height="wrap_content"

id="@+id/button_loeschen"
layout_below="@+id/editText_kw"
layout_toRightOf="@+id/button_umrechnen"
layout_toEndOf="@+id/button_umrechnen"

</RelativeLayout>

264

Android Studio unterstutzt auch hier den Entwickler bei
der Erstellung dieser Layoutdatei. Uber komfortable
Editoren kann man die einzelnen Grafikkomponenten
an den gewinschten Stellen positionieren, ohne sich in
die zulassige Android-XML-Tagsyntax einlesen zu mus-
sen. Auf diese Weise kdnnen beispielsweise alle XML-
Tag-Argumente, die mit android:layout_ beginnen, au-
tomatisch generiert werden.

android:text

Das XML-Argument android:text verweist mithilfe der
Angabe @string auf die Eintrage der string.xml Datei.
Achten Sie darauf, dass Sie in der activity_main.xml-
Datei KEINE Texte direkt angeben!

android:id

Uber dieses Argument werden den Grafikkomponenten
eindeutige id-Bezeichnungen zugeordnet, unter denen
sie spater eindeutig identifiziert und angesprochen wer-
den kénnen. Die Angabe @+id sorgt fir das automati-
sche Anlegen einer entsprechenden Referenz in der
Datei R.java (siehe folgenden Abschnitt).

Will man beispielsweise spater im eigenen Java-Pro-
gramm den Wert eines Eingabefeldes (EditText Zeile
18) auslesen, so benétigt man dazu dessen id (edit-
Text_ps, Zeile 21). id-Werte sind frei, allerdings mdog-
lichst "sprechend" und eindeutig zu wahlen.
android:onClick

Um einen Schalter mit Funktionalitdt hinterlegen zu
kénnen, ist bei dem Attribut android:onClick der Name
einer Funktion anzugeben, die beim Driicken des
Schalters ausgefiihrt werden soll.
android:onClick="onClickUmrechnen"

Beispielsweise sorgt die Festlegung in Zeile 56 dafr,
dass die Methode onClickUmrechnen() ausgefuhrt
wird, sobald man den Schalter UMRECHNEN driickt.

FININ Die Datei R.java

Die Datei R.java' dient als Schnittstelle zwischen den
XML-Template-Dateien und dem eigentlichen Java-Pro-
gramm. Nach jeder Anderung, beispielsweise an einer
XML-Layoutdatei, wird die R.java Datei automatisch
neu erzeugt und aktualisiert. Daher ist es ausgespro-
chen unsinnig an dieser Datei eigenstindig Anderung
vornehmen zu wollen, da sie standig Uberschrieben
wirde. Methoden wie findViewByld() ermdglichen zu-
sammen mit der Datei R.java den Zugriff auf die Grafik-
komponenten einer Activity mithilfe deren id.

e_ps = (EditText)this.findviewById(R.id.editText_ps);
Die Variable e_ps wird anschlielend eine Referenz auf
den EditText mit dem id-Wert editText_ps besitzen, aus
der mit dem Befehl getText() der Eingabetext ausgele-
sen und in einen String umgewandelt werden kann.
String s_ps = e_ps.getText().toString();

1 Das R steht als Abkirzung fiir Ressource.

Teil 6: XML-Template / Android-APP-Entwicklung

FIEIN Die Datei MainActivity.java

v Caapp

Nachdem das Layout
der Anwendung und
somit der View der
MV C-Architektur be-
stimmt worden ist,
geht es nun um die
Programmsteuerung
(Controller). Schon in
der Layoutdatei acti-

> [1 manifests
v [java
v [com.kw_ps.kw_ps
(© & MainActivity
> Eares

vity_main.xml hat
man mithilfe des Attributes android:onClick Methoden
bestimmt, die es nun zu konkretisieren gilt.
app\java\Paketabhdngiger-Name\activity_main.xml
Die eigentliche Programmlogik wird in Java geschrie-
ben und ist in der Datei MainActivity.java zu finden.

MainActivity.java

package com.kw_ps;

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle; import android.view.View;
import android.widget.EditText;

public class MainActivity extends AppCompatActivity
{
//Umrechnungskonstanten
private final static float PS_TO KW = 0.73112f;
private final static float KW_TO_PS = 1.36f;
//Benétigte Textfelder
private EditText e_ps; private EditText e_kw;

protected void onCreate(Bundle savedInstanceState)

{
super.onCreate(savedInstanceState);
setContentView(R.layout.activity main);
//Eingabefelder zuordnen bzw. identifizieren
e_ps=(EditText)this.findViewById(R.id.editText_ps);
e_kw=(EditText)this.findViewById(R.id.editText_kw);

}

public void onClickUmrechnen(View v)
{
// Texte einlesen
String s_ps = e_ps.getText().toString();
String s_kw = e_kw.getText().toString();
// Berechnung und Ergebnisanzeige
float f_ps; float f_kw;
if (!s_ps.equals("") && s_kw.equals(""))
{
f_ps = Float.valueOf(s_ps).floatValue();
f_kw = PS_TO KW * f_ps;
s_kw = String.valueOf(f_kw);
e_kw.setText(s_kw);
}
if (s_ps.equals("") & !s_kw.equals(""))
{
f_kw = Float.valueOf(s_kw).floatValue();
f_ps = KW_TO_PS * f_kw;
s_ps = String.valueOf(f_ps);
e_ps.setText(s_ps);
e_kw.setText(s_kw);

public void onClickLoeschen(View v)

{
e_ps.setText("");
e_kw.setText("");
}
public void onClickBeenden(View v)
{
this.finish();
}

)i

Auch die MainActivity.java-Datei wird bei der Projekter-
zeugung automatisch angelegt und ist vom Entwickler
lediglich anzupassen. Im konkreten Beispiel erganzen
die gelb hervorgehobenen Programmteile den automa-
tisch erzeugten Programmrumpf. Die Methoden der
Beispiel-MainActivity.java sind allesamt ereignisgesteu-
ert. So wird beispielsweise die Methode onClickUm-
rechnen() durchlaufen, wenn der Schalter UMRECH-
NEN gedruckt wurde.

Methode Ereignis / Auswirkung
onCreate | Die Activity wird erzeugt /
Eingabefelder werden identifiziert.
onClick-Um- | Schalter UMRECHNEN wurde gedriickt /
rechnen die PS-KW-Umrechnung erfolgt.
onClick- Schalter LOSCHEN wurde gedriickt /
Loeschen | die Eingabefelder werden geleert.
onClick- Schalter BEENDEN wurde gedriickt /
Beenden | Activity und Programm werden beendet.
Anmerkungen
Die eigentliche Programmlogik (Zeile 25-43) korre-
spondiert mit dem Beispielprogramm aus Kapitel
11.4.2 und sollte nachvollziehbar sein.

Bereits nach diesen Anderungen ist das Programm
lauffahig. Weitere Anderungen und Anpassungen in an-
deren Projektdateien sind nicht notwendig. Trotzdem
lohnt es sich noch, einen Blick auf die AndroidMainMa-
nifest.xml zu werfen, die als zentraler Einstiegspunkt
und Workflowsteuerung fungiert.

7kily4 Die Datei AndroidMainManifest.xml

Kapitel
11.4.2

Die XML-Datei An-
droidMainMani-

fest.xml enthalt zen-
trale Programmpara-

v Caapp
v [manifests

meter. Neben dem T
Paketnamen, dem Java
Programmicon, den > Edres

AndroidManifest.xml

Versions- und Pfad-
angaben existiert in dieser Datei fur jede Activity ein ei-
gener Abschnitt. Da das Beispielprogramm nur eine
einzige Activity besitzt, ist in der Datei AndroidMainMa-
nifest.xml des Beispiels auch nur ein einziger activity-

265

25

Aufgabe
22.21.2

&5

Aufgabe
22.21.3

Teil 6: XML-Template / Android-APP-Entwicklung

21 Android-APP-Entwicklung

Abschnitt (gelb hervorgehoben) zu finden. Der Name
der Activity MainActivity muss mit dem Namen der zu-
gehorigen Java-Steuerdatei libereinander passen.

AndroidMainManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest
xmlns:android="http://schemas.android.com/apk/res/android"
package="com.kw_ps">
<application
android:allowBackup="true"
android:icon="@mipmap/ic_launcher"
android:label="@string/app_name"
android:supportsRtl="true"
android:theme="@style/AppTheme">
<activity android:name=".MainActivity">
<intent-filter>
<action
android:name="android.intent.action.MAIN" />
<category
android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

Anmerkung

Auch wenn die AndroidMainManifest.xml-Datei zu-
nachst automatisch generiert wird, kommt es immer
wieder vor, dass Anpassungen an dieser Datei vorzu-
nehmen sind, insbesondere wenn man aufwendige
Anwendungen mit mehreren Activitys realisiert.

FIFEFN Ausblick

Das Beispiel eines einfachen Android-Projektes aus
dem vorherigen Abschnitt zeigt, wie die fiinf Dateien

* AndroidMainManifest.xml,
* MainActivity.java,

* activity_main.xml,

* Rjava,

¢ string.xpm

zusammenspielen und ineinandergreifen. Damit sind
Sie in der Lage eigene einfache Android-Anwendungen
zu schreiben bzw. automatisch generierten Quellcode
Ihren Wiinschen entsprechend anzupassen.

Mehr kann und soll das Buch an dieser Stelle nicht leis-
ten. Gerade wenn eine Anwendung mehr als eine Acti-
vity besitzt oder Menustrukturen hinzukommen sollen,
steigt die Komplexitat der Anwendung schnell an. Trotz-
dem ist das Erarbeiten weiterer Themen relativ einfach
moglich, wenn der grundlegende Aufbau und die prinzi-
pielle Arbeitsweise von Android-Applikationen erst ein-
mal verstanden ist. Daher folgen im nachsten Abschnitt
noch einige grundlegende Hintergrundinformationen.

266

FIIP2T Hintergrundinformationen

Es folgen weiterflihrende Informationen zu Activitys und
deren Kommunikation sowie deren Lebenszyklus.

FIFEN Activity

Die Activity (Bildschirmseite) spielt bei Android-Anwen-
dugen eine zentrale Rolle. Android-Apps bestehen aus
nur einer oder aber auch mehreren Bildschirmseiten.
Dabei sollte jede Bildschirmseite eine bestimmte Auf-
gabe oder Aktivitat erflllen. Daraus leitet sich auch der
Begriff Activity ab. Zu jeder Activity gehéren eine Lay-
outdatei und untrennbar damit verbunden eine eigene
Steuerungsdatei. In dem vorherigen Beispiel gehdren
etwa die Layoutdatei (View) activity_main.xml und die
Steuerungsdatei (Controll) MainActivity.java untrennbar
zusammen und bilden gemeinsam die Definition der
Activity. Besitzt ein Android-Projekt mehrere Activities,
so behalten die einzelnen Activities auf diese Weise
trotzdem ihre Eigensténdigkeit. Uberspitzt ausgedriickt,
ist eine Android-App also nichts andres als eine An-
sammlung eigenstandiger Activities, die miteinander
kommunizieren. Die Kommunikation zwischen unter-
schiedlichen Activities erfolgt tber Intent'-Objekte.

FIF¥3 Intent

Ein Intent ist eine lose Verbindung zwischen aufrufen-
der und aufgerufener Activity. Die Bildschirmseite, die
gerade angezeigt wird, ist dabei die aufrufende Activity.
Sie muss das Feld (den Bildschirm) rdumen, damit nun
die aufgerufene Activity angezeigt und somit aktiviert
werden kann. Die Verbindung zwischen aufrufender
und aufgerufener Activity erfolgt in drei Schritten.

1. Die aufrufende Activity erzeugt ein Intent-Objekt.

2. Sie befiillt das Intent-Objekt mit Informationen.
Informationen im Intent-Objekt sind:
a) welche Activity soll aufgerufen werden.
b) welche Daten sind an die Activity zu Ubertragen.

3. AnschlieBend versendet die aufrufende Activity
das Intent.

Das System wird das Intent entgegennehmen, die ge-
wiinschte Activity starten und die im Intent enthaltenen
Daten an die aufgerufene Activity Gbergeben.

Anmerkung

Obwohl in der Beispiel-App des vorigen Kapitels nur
eine einzige Activity verwendet wird, finden sich be-
reits <intent-filter>-Tags (Zeile 12-17) in der Datei
AndroidMainManifest.xml. Uber diese XML-Tags wird
gesteuert, wie und ob Activities aus anderen Anwen-
dungen mit der selbstgeschriebenen Activity mittels
Intent-Objekten in Verbindung treten und diese aufru-
fen dirfen.

1 Intent, dt. Absicht, Ziel

	21 Android-App-Entwicklung
	21.1 Erste Beispiel-App (KW-PS)
	21.1.1 Entwicklungsumgebung
	21.1.2 Verzeichnisstruktur
	21.1.3 Die Datei string.xml
	21.1.4 Die Datei activity_main.xml
	21.1.5 Die Datei R.java
	21.1.6 Die Datei MainActivity.java
	21.1.7 Die Datei AndroidMainManifest.xml
	21.1.8 Ausblick

	21.2 Hintergrundinformationen
	21.2.1 Activity
	21.2.2 Intent

