
Teil 6: XML-Template / Android-APP-Entwicklung

21 Android-APP-Entwicklung

 21 Android-App-Entwicklung

Android ist ein von Google (weiter-) ent-
wickeltes Betriebssystem, das insbe-
sondere für mobile Endgeräte konzipiert
worden ist. Damit einher gehen beson-
dere Anforderungen an das Betriebs-
system. Android muss im Hinblick auf
den Energieverbrauch extrem ressour-
censchonend sein, da die Endgeräte
zumeist akkubetrieben sind. Dies ist ein

wesentlicher Grund dafür, warum das Betriebssystem
Linux nicht direkt als Betriebssystem für mobile Endge-
räte verwendet werden kann, sondern lediglich als Aus-
gangsbasis für die Entwicklung von Android dient. Aber
auch für Android entwickelte Anwendungen müssen be-
sonderen Bedingungen genügen.

Besondere Herausforderungen
 1. Da es sehr unterschiedliche mobile Endgeräte gibt,

muss die Ausgabe den verschiedenen Bildschirm-
größen angepasst werden können. Dieselbe APP
sollte nach Möglichkeit auf Handys, Smartphones,
Tablettes, TV-Geräten etc. lauffähig sein.

 2. Sehr unterschiedliche Hardwarehersteller nutzen
auf ihren Geräten Android als Betriebssystem. So-
mit kann nicht garantiert werden, dass die jeweilige
Hardware auch wirklich mit der neuesten Android
Betriebssystemversion kompatibel ist. Vielmehr
muss der Softwareentwickler davon ausgehen,
dass auf den Endgeräten der Nutzer diverse An-
droid-Versionen vorzufinden sind.

Lösungsansätze und Programmiertipps

Android-Versionen
Eine Android-App sollte auf möglichst vielen Endgerä-
ten eingesetzt werden können. Daher ist es NICHT rat-
sam eine App ausschließlich für die zur Zeit aktuelle
Android-Version zu entwickeln. Da die verschiedenen
Android-Versionen in der Regel abwärtskompatibel
sind, sollte man sich als Entwickler für eine Android-
Version entscheiden, mit der mindestens 70% bis 80%
der Endgeräte abgedeckt werden können. Nur so ist
eine hinreichend große Zielgruppe erreichbar.

Display activity_main.xml
Auch die sehr unterschiedlichen Bildschirmgrößen der
diversen Endgeräte stellen eine besondere Herausfor-
derung dar. Um eine Android-App auf unterschiedlichen
Ausgabemedien dynamisch anpassen zu können, wird
bei der Android-App-Entwicklung stark auf die XML-
Templatetechnik gesetzt. Dadurch wird es beispielswei-
se möglich das gesamte Layout einer Anwendung über
XML-Dokumente zu definieren. Der Entwickler legt da-
bei nur den prinzipiellen Aufbau einer Bildschirmseite
(Activity) einer App fest, ohne sich um die tatsächliche
Umsetzung und das unterschiedliche Erscheinungsbild

auf den diversen Endgeräten Gedanken machen zu
müssen (siehe XML-Template, Kapitel 20).
Außerdem ist mithilfe der XML-Templates eine optimale
Trennung zwischen Darstellung (View) und Steuerung
(Controll) und somit eine ideale Umsetzung der MVC-
Architektur erreichbar (vergleiche Kapitel 12.3 u. 18).

Sprachen strings.xml
Auch sämtliche Textausgaben einer App (wie etwa ein-
fache Label oder auch Schalterbeschriftungen, etc.)
lassen sich mittels XML-Templates in separaten Datei-
en definieren. Diese Technik ist immer dann besonders
wichtig, wenn eine App auch in mehreren Sprachen an-
geboten werden soll. Denn dann kann die Anwendung
extrem einfach, auch im Nachhinein, mehrsprachig an-
gepasst werden. Wenn eine App auf dem internationa-
len Markt Erfolg haben soll, muss sie mindestens auch
die Sprache Englisch unterstützen.

Java vs. XML-Template MainActivitiy.java
Android-Anwendungen werden generell in Java pro-
grammiert. Obwohl es möglich ist, fast die komplette
Standard-Java-API zu nutzen, sollte man sich, gerade
was die GUI-Entwicklung angeht, von der „klassischen“
Programmierung lösen und unbedingt auf die XML-tem-
platebasierte Programmierung umsteigen. Nur so lässt
sich ein geräteunabhängiges und MVC-architekturkon-
formes Programm effizient realisieren.
Die Programmiersprache Java kommt spätestens dann
ins Spiel, wenn es um die eigentliche Programmsteue-
rung, die Ausformulierung der Funktionalität geht (ent-
spricht dem Controller der MVC-Architektur). Was bei-
spielsweise bei einem Schalterdruck oder einer
Menüauswahl tatsächlich passieren soll, muss in ent-
sprechenden Java-Methoden ausformuliert werden.

Dateien eines Android-Projektes
In einem minimalen Android-Projekt1 mit nur einer einzi-
gen Bildschirmseite (Activity) gibt es mindestens drei
Dateien, in denen der Entwickler Änderungen vorneh-
men muss.

activity_main.xml Layout (Display)
Diese XML-Datei dient der Definition des Layouts.

string.xml Values (Sprachen)
In der string.xml-Datei sind alle landessprachenabhän-
gigen Anzeigetexte und Beschriftungen definiert.

MainActivity.java Java (Steuerung)
Diese Java-Datei realisiert die Programmsteuerung.

Ein Android-Projekt umfasst allerdings noch eine Reihe
weiterer Dateien, von denen der Entwickler mindestens
noch die AndroidManifest.xml-Datei (enthält grundle-
gende Spezifikationen zur App) und die R.java-Datei
(Schnittstellendatei zwischen View und Controller) ken-
nen sollte. Beide Dateien und deren Bedeutung werden
im folgenden Beispiel genauer beschrieben.

1 Ein minimales Android-Projekt besteht aus nur einer einzigen
Bildschirmseite ohne Menüs.

261


Kapitel

20
12.3
18

Teil 6: XML-Template / Android-APP-Entwicklung

21 Android-APP-Entwicklung

 21.1 Erste Beispiel-App (KW-PS)
Im nachfolgenden Beispiel soll der Umrechner zwi-
schen PS (Pferdestärken) und KW (Kilowatt) aus Kapi-
tel 11.4.2 als Android-App ausgeführt werden.

Die App selbst ist sehr einfach gehalten! Sie besitzt nur
eine einzige Anzeigeseite, auch Activity genannt. Die
Activity selbst soll folgende Komponenten anzeigen:

app_name
Name der App KW_PS Label

Beschreibungstext (klein)
Beschreibung Umrechner TextView

PS-Eingabezeile
Beschriftung PS: TextView
Eingabefeld _________ EditText

KW-Eingabezeile
Beschriftung KW: TextView
Eingabefeld _________ EditText

Schalter
Beschriftung UMRECHNEN Button
Beschriftung LÖSCHEN Button
Beschriftung BEENDEN Button

Funktionsweise
Der Schalter BEENDEN soll das gesamte Programm
beenden und die App schließen.
Über den Schalter LÖSCHEN kann man beide Einga-
befelder leeren.
Sind beide Eingabefelder leer, so lässt sich entweder
ein PS- oder ein KW-Wert eingeben und über den UM-
RECHNEN-Schalter der jeweils andere Wert berechnen
und anzeigen.

 21.1.1 Entwicklungsumgebung

Bevor man nun mit der ei-
gentlichen Programmentwick-
lung beginnen kann, muss zu-
nächst die Android-Entwick-
lungsumgebung Android Stu-
dio installiert werden.
Dabei basiert die von Google kostenlos bereitgestellte
IDE auf der IntelliJ IDEA. Andere IDE's wie etwa die
Eclipse werden von Google nicht mehr supportet.

Installation
Während der Installation von Android Studio besteht
die Möglichkeit auch direkt ein virtuelles Device, einen
Emulator für Android-Endgeräte zu installieren. Dies ist
immer dann sinnvoll, wenn man die Applikationen nicht
direkt auf einem Android-Gerät testen kann oder man
den damit verbundenen technischen Aufwand scheut.

Neues Projekt anlegen
Ist Android Studio installiert, kann man ein neues Pro-
jekt anlegen. Dafür sind folgende Angaben notwendig:

 1. Application-Name (Applikationsname)
 a) sollte mit einem Großbuchstaben beginnen.

 2. Company Domain (Unternehmensdomain)
 a) kann auch eine Fantasiedomain sein.

 3. SDK für unterschiedliche Plattformen
 a) SDK für "Phone and Tablet" auswählen.
 b) Minimale Android-Version bestimmen.

(so wählen, dass mehr als 70% aller Endgeräte
die App auch später einsetzen können!)

 4. Start-Avtivity (Grundaufbau) wählen
 a) Da die Beispiel-App sehr einfach ist und sogar

ohne Menü auskommt genügt hier die Auswahl
"Empty Activity“.

 b) Von der Auswahl hängt ab, wie beispielsweise
die AndroidManifest.xml Datei des Projektes
anschließend automatisch generiert wird.

Anmerkung
Diese Informationen zur Installation und Projekterzeu-
gung in Android Studio sollen hier genügen. Genaue-
re und den einzelnen Android-Studio-Versionen exakt
angepasste "Schritt für Schritt"-Installationsanleitun-
gen lassen sich im Internet finden.

262

a

a

b

b

c

c

d

d

e

e

Aufgabe
22.21.1




Kapitel
11.4.2

Teil 6: XML-Template / Android-APP-Entwicklung

21 Android-APP-Entwicklung

 21.1.2 Verzeichnisstruktur

Ist das Android Studio installiert
und das erste Projekt angelegt, so
sind in dem Applikationsverzeichnis
folgende Unterordner zu finden.

manifests
Der Ordner manifests enthält alle

übergeordneten Spezifikationsdateien, so auch die An-
droidManifest.xml-Datei der Beispiel-App. Auf die Be-
deutung dieser Datei wird zu einem späteren Zeitpunkt
noch eingegangen.

java
Im Ordner java sind alle Java-Quelldateien zu finden.
Auch die Datei MainActivity.java, die die einzige Avtivity
der Beispiel-App steuert, wird in Unterverzeichnissen
dieses Ordners zu finden sein.

res
Die Abkürzung res steht für Ressource und bezeichnet
damit ein Verzeichnis, das unterschiedlichste Quellda-
teien wie Layoutbeschreibungen oder Grafiken (Icon)
sowie Textfragmente in Unterverzeichnissen zusam-
menfasst.

Anmerkung
Bereits nach dem Anlegen des ersten Projektes sind
in dem Verzeichnisbaum alle notwendigen Dateien für
eine lauffähige Applikation vorhanden. Startet man
das Projekt, so erscheint im Emulator bereits (nach
einiger Zeit…) die eigene App mit der Ausgabe "Hallo
World". Zur Realisierung der Beispiel-App sind somit
nur die bestehenden Dateien richtig anzupassen.

 21.1.3 Die Datei string.xml

Die Datei strings.xml
stellt landessprachen-
abhängige Texte bereit.
Sie bildet damit die
Grundlage für Elemen-
te der Layoutbeschrei-
bung. Daher ist es sinn-
voll, gerade mit der Be-
arbeitung dieser Datei
zu beginnen.
Android Studio stellt al-
lerdings Hilfsmittel zur
Verfügung um auch
nachträglich noch
String definitionen
nachzureichen, so dass
es nicht allzu problema-
tisch ist, sollte man mal

eine Textdefinition vergessen haben. Da die Datei
string.xml Werte (values) von Textvariablen (Strings)
als Quellinformationen (ressourcen) bereitstellt, ist die
Datei logischerweise im Verzeichnis

app\res\values\string.xml

zu finden. Die Datei strings.xml hat folgenden Inhalt:
Alle Texte der Beispiel-App sind darin enthalten.

string.xml

1 <resources>
2 <string name="app_name">KW_PS</string>
3 <string name="textView_ueberschrift">
4 Umrechner</string>
5 <string name="textView_ps">PS:</string>
6 <string name="textView_kw">KW:</string>
7 <string name="button_umrechnen">
8 UMRECHNEN</string>
9 <string name="button_beenden">
10 BEENDEN</string>
11 <string name="button_loeschen">
12 LÖSCHEN</string>
13 </resources>

Dabei handelt es sich um eine reine XML-Datei, die es
ermöglicht Texte wie UMRECHNEN (Zeile 8) über ein-
deutige Namen wie button_umrechnen (Zeile 7) in an-
deren Dateien anzusprechen.
Möchte man nun das Programm auf andere Landes-
sprachen umstellen, genügt es den eigentlichen Text
UMRECHNEN durch z. B. CONVERT zu ersetzen. Alle
anderen Programmdateien sind von dieser Änderung
nicht betroffen, da auch der geänderte Text weiterhin
über den internen Namen button_umrechnen an-
sprechbar bleibt.

 21.1.4 Die Datei activity_main.xml

Ist die Datei
string.xml vorhan-
den, lässt sich mit
deren Hilfe nun das
Layout (View) der
Activity der Beispie-
lapplikation bestim-
men. Auch hierbei
handelt es sich um
eine XML-Datei, die
die Position und das
Aussehen einzelner
Grafikkomponenten
definiert. Die Datei activity_main.xml ist zu finden im
Verzeichnis:

app\res\layout\activity_main.xml

Bitte beachten Sie den Zusammenhang zwischen den
rot hinterlegten Stellen hier und in der Datei string.xml.

activity_main.xml

1 <?xml version="1.0" encoding="utf-8"?>
2 <RelativeLayout
3
4 xmlns:android="http://schemas.android.com/apk/res/android"
5 xmlns:tools="http://schemas.android.com/tools"
6 android:layout_width="match_parent"
7 android:layout_height="match_parent"
8 android:paddingBottom="@dimen/activity_vertical_margin"

263

viewview

Teil 6: XML-Template / Android-APP-Entwicklung

21 Android-APP-Entwicklung

9 android:paddingLeft="@dimen/activity_horizontal_margin"
10 android:paddingRight="@dimen/activity_horizontal_margin"
11 android:paddingTop="@dimen/activity_vertical_margin"
12 tools:context="com.kw_ps.kw_ps.MainActivity">
13 <TextView
14 android:layout_width="wrap_content"
15 android:layout_height="wrap_content"
16 android:text="@string/textView_ueberschrift"
17 android:id="@+id/textView_ueberschrift" />
18 <EditText
19 android:layout_width="match_parent"
20 android:layout_height="wrap_content"
21 android:id="@+id/editText_ps"
22 android:layout_below="@+id/textView_ueberschrift"
23 android:layout_toRightOf="@+id/textView_ueberschrift"
24 android:layout_gravity="left|right" />
25 <EditText
26 android:layout_width="match_parent"
27 android:layout_height="wrap_content"
28 android:id="@+id/editText_kw"
29 android:layout_below="@+id/editText_ps"
30 android:layout_toRightOf="@+id/textView_ueberschrift"
31 android:layout_toEndOf="@+id/textView_ueberschrift" />
32 <TextView
33 android:layout_width="wrap_content"
34 android:layout_height="wrap_content"
35 android:text="@string/textView_ps"
36 android:id="@+id/textView_ps"
37 android:layout_above="@+id/editText_kw"
38 android:layout_alignParentLeft="true"
39 android:layout_alignParentStart="true" />
40 <TextView
41 android:layout_width="wrap_content"
42 android:layout_height="wrap_content"
43 android:text="@string/textView_kw"
44 android:id="@+id/textView_kw"
45 android:layout_alignBottom="@+id/editText_kw"
46 android:layout_alignParentLeft="true"
47 android:layout_alignParentStart="true" />
48 <Button
49 android:layout_width="wrap_content"
50 android:layout_height="wrap_content"
51 android:text="@string/button_umrechnen"
52 android:id="@+id/button_umrechnen"
53 android:layout_below="@+id/textView_kw"
54 android:layout_toRightOf="@+id/textView_ueberschrift"
55 android:layout_toEndOf="@+id/textView_ueberschrift"
56 android:onClick="onClickUmrechnen" />
57 <Button
58 android:layout_width="wrap_content"
59 android:layout_height="wrap_content"
60 android:text="@string/button_beenden"
61 android:id="@+id/button_beenden"
62 android:layout_below="@+id/editText_kw"
63 android:layout_toRightOf="@+id/button_loeschen"
64 android:layout_toEndOf="@+id/button_loeschen" />
65 android:onClick="onClickBeenden"
66 <Button
67 android:layout_width="wrap_content"
68 android:layout_height="wrap_content"
69 android:text="@string/button_loeschen"
70 android:id="@+id/button_loeschen"
71 android:layout_below="@+id/editText_kw"
72 android:layout_toRightOf="@+id/button_umrechnen"
73 android:layout_toEndOf="@+id/button_umrechnen"
74 android:onClick="onClickLoeschen" />
75
76 </RelativeLayout>

Android Studio unterstützt auch hier den Entwickler bei
der Erstellung dieser Layoutdatei. Über komfortable
Editoren kann man die einzelnen Grafikkomponenten
an den gewünschten Stellen positionieren, ohne sich in
die zulässige Android-XML-Tagsyntax einlesen zu müs-
sen. Auf diese Weise können beispielsweise alle XML-
Tag-Argumente, die mit android:layout_ beginnen, au-
tomatisch generiert werden.

android:text
Das XML-Argument android:text verweist mithilfe der
Angabe @string auf die Einträge der string.xml Datei.
Achten Sie darauf, dass Sie in der activity_main.xml-
Datei KEINE Texte direkt angeben!

android:id
Über dieses Argument werden den Grafikkomponenten
eindeutige id-Bezeichnungen zugeordnet, unter denen
sie später eindeutig identifiziert und angesprochen wer-
den können. Die Angabe @+id sorgt für das automati-
sche Anlegen einer entsprechenden Referenz in der
Datei R.java (siehe folgenden Abschnitt).
Will man beispielsweise später im eigenen Java-Pro-
gramm den Wert eines Eingabefeldes (EditText Zeile
18) auslesen, so benötigt man dazu dessen id (edit-
Text_ps, Zeile 21). id-Werte sind frei, allerdings mög-
lichst "sprechend" und eindeutig zu wählen.

android:onClick
Um einen Schalter mit Funktionalität hinterlegen zu
können, ist bei dem Attribut android:onClick der Name
einer Funktion anzugeben, die beim Drücken des
Schalters ausgeführt werden soll.

android:onClick="onClickUmrechnen"

Beispielsweise sorgt die Festlegung in Zeile 56 dafür,
dass die Methode onClickUmrechnen() ausgeführt
wird, sobald man den Schalter UMRECHNEN drückt.

 21.1.5 Die Datei R.java

Die Datei R.java1 dient als Schnittstelle zwischen den
XML-Template-Dateien und dem eigentlichen Java-Pro-
gramm. Nach jeder Änderung, beispielsweise an einer
XML-Layoutdatei, wird die R.java Datei automatisch
neu erzeugt und aktualisiert. Daher ist es ausgespro-
chen unsinnig an dieser Datei eigenständig Änderung
vornehmen zu wollen, da sie ständig überschrieben
würde. Methoden wie findViewById() ermöglichen zu-
sammen mit der Datei R.java den Zugriff auf die Grafik-
komponenten einer Activity mithilfe deren id.

e_ps = (EditText)this.findViewById(R.id.editText_ps);

Die Variable e_ps wird anschließend eine Referenz auf
den EditText mit dem id-Wert editText_ps besitzen, aus
der mit dem Befehl getText() der Eingabetext ausgele-
sen und in einen String umgewandelt werden kann.

String s_ps = e_ps.getText().toString();

1 Das R steht als Abkürzung für Ressource.

264

Teil 6: XML-Template / Android-APP-Entwicklung

21 Android-APP-Entwicklung

 21.1.6 Die Datei MainActivity.java

Nachdem das Layout
der Anwendung und
somit der View der
MVC-Architektur be-
stimmt worden ist,
geht es nun um die
Programmsteuerung
(Controller). Schon in
der Layoutdatei acti-
vity_main.xml hat

man mithilfe des Attributes android:onClick Methoden
bestimmt, die es nun zu konkretisieren gilt.

app\java\Paketabhängiger-Name\activity_main.xml

Die eigentliche Programmlogik wird in Java geschrie-
ben und ist in der Datei MainActivity.java zu finden.

MainActivity.java

1 package com.kw_ps;
2 import android.support.v7.app.AppCompatActivity;
3 import android.os.Bundle; import android.view.View;
4 import android.widget.EditText;
5
6 public class MainActivity extends AppCompatActivity
7 {
8 //Umrechnungskonstanten
9 private final static float PS_TO_KW = 0.73112f;
10 private final static float KW_TO_PS = 1.36f;
11 //Benötigte Textfelder
12 private EditText e_ps; private EditText e_kw;
13
14 protected void onCreate(Bundle savedInstanceState)
15 {
16 super.onCreate(savedInstanceState);
17 setContentView(R.layout.activity_main);
18 //Eingabefelder zuordnen bzw. identifizieren
19 e_ps=(EditText)this.findViewById(R.id.editText_ps);
20 e_kw=(EditText)this.findViewById(R.id.editText_kw);
21 }
22
23 public void onClickUmrechnen(View v)
24 {
25 // Texte einlesen
26 String s_ps = e_ps.getText().toString();
27 String s_kw = e_kw.getText().toString();
28 // Berechnung und Ergebnisanzeige
29 float f_ps; float f_kw;
30 if (!s_ps.equals("") && s_kw.equals(""))
31 {
32 f_ps = Float.valueOf(s_ps).floatValue();
33 f_kw = PS_TO_KW * f_ps;
34 s_kw = String.valueOf(f_kw);
35 e_kw.setText(s_kw);
36 }
37 if (s_ps.equals("") && !s_kw.equals(""))
38 {
39 f_kw = Float.valueOf(s_kw).floatValue();
40 f_ps = KW_TO_PS * f_kw;
41 s_ps = String.valueOf(f_ps);
42 e_ps.setText(s_ps);
43 e_kw.setText(s_kw);
44 }
45 }

46
47 public void onClickLoeschen(View v)
48 {
49 e_ps.setText("");
50 e_kw.setText("");
51 }
52
53 public void onClickBeenden(View v)
54 {
55 this.finish();
56 }
57 }

Auch die MainActivity.java-Datei wird bei der Projekter-
zeugung automatisch angelegt und ist vom Entwickler
lediglich anzupassen. Im konkreten Beispiel ergänzen
die gelb hervorgehobenen Programmteile den automa-
tisch erzeugten Programmrumpf. Die Methoden der
Beispiel-MainActivity.java sind allesamt ereignisgesteu-
ert. So wird beispielsweise die Methode onClickUm-
rechnen() durchlaufen, wenn der Schalter UMRECH-
NEN gedrückt wurde.

Methode Ereignis / Auswirkung

onCreate Die Activity wird erzeugt /
Eingabefelder werden identifiziert.

onClick-Um-
rechnen

Schalter UMRECHNEN wurde gedrückt /
die PS-KW-Umrechnung erfolgt.

onClick-
Loeschen

Schalter LÖSCHEN wurde gedrückt /
die Eingabefelder werden geleert.

onClick-
Beenden

Schalter BEENDEN wurde gedrückt /
Activity und Programm werden beendet.

Anmerkungen
Die eigentliche Programmlogik (Zeile 25-43) korre-
spondiert mit dem Beispielprogramm aus Kapitel
11.4.2 und sollte nachvollziehbar sein.

Bereits nach diesen Änderungen ist das Programm
lauffähig. Weitere Änderungen und Anpassungen in an-
deren Projektdateien sind nicht notwendig. Trotzdem
lohnt es sich noch, einen Blick auf die AndroidMainMa-
nifest.xml zu werfen, die als zentraler Einstiegspunkt
und Workflowsteuerung fungiert.

 21.1.7 Die Datei AndroidMainManifest.xml

Die XML-Datei An-
droidMainMani-
fest.xml enthält zen-
trale Programmpara-
meter. Neben dem
Paketnamen, dem
Programmicon, den
Versions- und Pfad-
angaben existiert in dieser Datei für jede Activity ein ei-
gener Abschnitt. Da das Beispielprogramm nur eine
einzige Activity besitzt, ist in der Datei AndroidMainMa-
nifest.xml des Beispiels auch nur ein einziger activity-

265

con-
troller
con-

troller


Kapitel
11.4.2

Teil 6: XML-Template / Android-APP-Entwicklung

21 Android-APP-Entwicklung

Abschnitt (gelb hervorgehoben) zu finden. Der Name
der Activity MainActivity muss mit dem Namen der zu-
gehörigen Java-Steuerdatei übereinander passen.

AndroidMainManifest.xml

1 <?xml version="1.0" encoding="utf-8"?>
2 <manifest
3 xmlns:android="http://schemas.android.com/apk/res/android"
4 package="com.kw_ps">

5 <application
6 android:allowBackup="true"

7 android:icon="@mipmap/ic_launcher"
8 android:label="@string/app_name"
9 android:supportsRtl="true"
10 android:theme="@style/AppTheme">
11 <activity android:name=".MainActivity">
12 <intent-filter>

13 <action
14 android:name="android.intent.action.MAIN" />

15 <category
16 android:name="android.intent.category.LAUNCHER" />

17 </intent-filter>
18 </activity>
19 </application>

20 </manifest>

Anmerkung
Auch wenn die AndroidMainManifest.xml-Datei zu-
nächst automatisch generiert wird, kommt es immer
wieder vor, dass Anpassungen an dieser Datei vorzu-
nehmen sind, insbesondere wenn man aufwendige
Anwendungen mit mehreren Activitys realisiert.

 21.1.8 Ausblick

Das Beispiel eines einfachen Android-Projektes aus
dem vorherigen Abschnitt zeigt, wie die fünf Dateien

• AndroidMainManifest.xml,
• MainActivity.java,
• activity_main.xml,
• R.java,
• string.xpm

zusammenspielen und ineinandergreifen. Damit sind
Sie in der Lage eigene einfache Android-Anwendungen
zu schreiben bzw. automatisch generierten Quellcode
Ihren Wünschen entsprechend anzupassen.
Mehr kann und soll das Buch an dieser Stelle nicht leis-
ten. Gerade wenn eine Anwendung mehr als eine Acti-
vity besitzt oder Menüstrukturen hinzukommen sollen,
steigt die Komplexität der Anwendung schnell an. Trotz-
dem ist das Erarbeiten weiterer Themen relativ einfach
möglich, wenn der grundlegende Aufbau und die prinzi-
pielle Arbeitsweise von Android-Applikationen erst ein-
mal verstanden ist. Daher folgen im nächsten Abschnitt
noch einige grundlegende Hintergrundinformationen.

 21.2 Hintergrundinformationen
Es folgen weiterführende Informationen zu Activitys und
deren Kommunikation sowie deren Lebenszyklus.

 21.2.1 Activity

Die Activity (Bildschirmseite) spielt bei Android-Anwen-
dugen eine zentrale Rolle. Android-Apps bestehen aus
nur einer oder aber auch mehreren Bildschirmseiten.
Dabei sollte jede Bildschirmseite eine bestimmte Auf-
gabe oder Aktivität erfüllen. Daraus leitet sich auch der
Begriff Activity ab. Zu jeder Activity gehören eine Lay-
outdatei und untrennbar damit verbunden eine eigene
Steuerungsdatei. In dem vorherigen Beispiel gehören
etwa die Layoutdatei (View) activity_main.xml und die
Steuerungsdatei (Controll) MainActivity.java untrennbar
zusammen und bilden gemeinsam die Definition der
Activity. Besitzt ein Android-Projekt mehrere Activities,
so behalten die einzelnen Activities auf diese Weise
trotzdem ihre Eigenständigkeit. Überspitzt ausgedrückt,
ist eine Android-App also nichts andres als eine An-
sammlung eigenständiger Activities, die miteinander
kommunizieren. Die Kommunikation zwischen unter-
schiedlichen Activities erfolgt über Intent1-Objekte.

 21.2.2 Intent

Ein Intent ist eine lose Verbindung zwischen aufrufen-
der und aufgerufener Activity. Die Bildschirmseite, die
gerade angezeigt wird, ist dabei die aufrufende Activity.
Sie muss das Feld (den Bildschirm) räumen, damit nun
die aufgerufene Activity angezeigt und somit aktiviert
werden kann. Die Verbindung zwischen aufrufender
und aufgerufener Activity erfolgt in drei Schritten.

 1. Die aufrufende Activity erzeugt ein Intent-Objekt.
 2. Sie befüllt das Intent-Objekt mit Informationen.

Informationen im Intent-Objekt sind:
 a) welche Activity soll aufgerufen werden.
 b) welche Daten sind an die Activity zu übertragen.

 3. Anschließend versendet die aufrufende Activity
das Intent.

Das System wird das Intent entgegennehmen, die ge-
wünschte Activity starten und die im Intent enthaltenen
Daten an die aufgerufene Activity übergeben.

Anmerkung

Obwohl in der Beispiel-App des vorigen Kapitels nur
eine einzige Activity verwendet wird, finden sich be-
reits <intent-filter>-Tags (Zeile 12-17) in der Datei
AndroidMainManifest.xml. Über diese XML-Tags wird
gesteuert, wie und ob Activities aus anderen Anwen-
dungen mit der selbstgeschriebenen Activity mittels
Intent-Objekten in Verbindung treten und diese aufru-
fen dürfen.

1 Intent, dt. Absicht, Ziel

266

Aufgabe
22.21.3



Aufgabe
22.21.2



	21 Android-App-Entwicklung
	21.1 Erste Beispiel-App (KW-PS)
	21.1.1 Entwicklungsumgebung
	21.1.2 Verzeichnisstruktur
	21.1.3 Die Datei string.xml
	21.1.4 Die Datei activity_main.xml
	21.1.5 Die Datei R.java
	21.1.6 Die Datei MainActivity.java
	21.1.7 Die Datei AndroidMainManifest.xml
	21.1.8 Ausblick

	21.2 Hintergrundinformationen
	21.2.1 Activity
	21.2.2 Intent

